Login / Signup

Febuxostat and its major acyl glucuronide metabolite are potent inhibitors of organic anion transporter 3: Implications for drug-drug interactions with rivaroxaban.

Lloyd Wei Tat TangTino Woon Huai CheongEric Chun Yong Chan
Published in: Biopharmaceutics & drug disposition (2022)
Febuxostat is a second-line xanthine oxidase inhibitor that undergoes extensive hepatic metabolism to yield its major acyl-β-D-glucuronide metabolite (febuxostat AG). It was recently reported that febuxostat inhibited organic anion transporter 3 (OAT3)-mediated uptake of enalaprilat. Here, we investigated the inhibition of febuxostat and febuxostat AG on OAT3 in transfected human embryonic kidney 293 cells. Our transporter inhibition assays confirmed the potent noncompetitive and competitive inhibition of OAT3-mediated estrone-3-sulfate transport by febuxostat and febuxostat AG with corresponding apparent K i values of 0.55 and 6.11 μM respectively. After accounting for probe substrate-dependency and protein binding effects, mechanistic static modelling with the direct factor Xa anticoagulant rivaroxaban estimated a 1.47-fold increase in its systemic exposure when co-administered with febuxostat based on OAT3 interaction which in turn exacerbates the bleeding risk from baseline for patients with atrial fibrillation by 1.51-fold. Taken together, our results suggested that the concomitant usage of febuxostat with rivaroxaban may potentially culminate in a clinically-significant drug-drug interaction and result in an increased risk of bleeding as a result of its OAT3 inhibition.
Keyphrases