Login / Signup

eProbe: Sampling of Environmental DNA within Tree Canopies with Drones.

Steffen KirchgeorgJia Jin Marc ChangYin Cheong Aden IpMeret JuckerChristian GeckelerMartina N LüthiEnrico van der LooElvira MächlerNicolás D Franco-SierraMailyn Adriana Gonzalez HerreraLoïc PellissierKristy DeinerAndrea DesideratoStefano Mintchev
Published in: Environmental science & technology (2024)
Environmental DNA (eDNA) analysis is a powerful tool for studying biodiversity in forests and tree canopies. However, collecting representative eDNA samples from these high and complex environments remains challenging. Traditional methods, such as surface swabbing or tree rolling, are labor-intensive and require significant effort to achieve adequate coverage. This study proposes a novel approach for unmanned aerial vehicles (UAVs) to collect eDNA within tree canopies by using a surface swabbing technique. The method involves lowering a probe from a hovering UAV into the canopy and collecting eDNA as it descends and ascends through branches and leaves. To achieve this, a custom-designed robotic system was developed featuring a winch and a probe for eDNA collection. The design of the probe was optimized, and a control logic for the winch was developed to reduce the risk of entanglement while ensuring sufficient interaction force to facilitate transfer of eDNA onto the probe. The effectiveness of this method was demonstrated during the XPRIZE Rainforest Semi-Finals as 10 eDNA samples were collected from the rainforest canopy, and a total of 152 molecular operational taxonomic units (MOTUs) were identified using eDNA metabarcoding. We further investigate how the number of probe interactions with vegetation, the penetration depth, and the sampling duration influence the DNA concentration and community composition of the samples.
Keyphrases
  • living cells
  • single molecule
  • quantum dots
  • circulating tumor
  • cell free
  • climate change
  • randomized controlled trial
  • systematic review
  • mental health
  • healthcare
  • human health
  • cross sectional