Login / Signup

Lipidomics reveals serum lipid metabolism disorders in CTD-induced liver injury.

Shan LiXiaotong DuanYixin ZhangCancan ZhaoMing YuXiaofei LiXiaomei LiJianyong Zhang
Published in: BMC pharmacology & toxicology (2024)
The results showed that the levels of TC and LDL-C were significantly increased after CTD intervention. Besides, pathological results showed inflammatory cell infiltration and hepatocyte necrosis in the liver. Furthermore, lipidomics found that a total of 18 lipid metabolites were increased and 40 were decreased, including LPC(20:4), LPC(20:3), PC(22:6e/2:0), PE(14:0e/21:2), PC(18:2e/22:6), glycerophospholipids, CE(16:0), CE(18:0) Cholesterol esters and TAG(12:0/12:0/22:3), TAG(16:1/16:2/20:4), TAG(18:1/18:1/20:0), TAG(16:2/18:2/18:2), TAG(18:0/18:0/20:0), TAG(13:1/19:0/19:0) glycerolipids. Metabolic pathway analysis found that glycerophospholipid, glycerol ester and glycosylphosphatidylinositol (GPI)-anchored biosynthetic metabolic pathways were dysregulated and the increase in PE caused by glycophoric metabololism and GPI may be the source of lipid metabolism disorders caused by CTD. Overall, the present study provided new insights into the mechanism of CTD-induced liver injury and increased drug safety during clinical application.
Keyphrases
  • randomized controlled trial
  • fatty acid
  • oxidative stress
  • stem cells
  • ms ms
  • single cell
  • emergency department
  • cell therapy
  • bone marrow
  • data analysis