Login / Signup

Oridonin-induced mitochondria-dependent apoptosis in esophageal cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways.

Jin-Huan JiangJiang PiHua JinJi-Ye Cai
Published in: Journal of cellular biochemistry (2018)
Oridonin, an active diterpenoid isolated from Rabdosia rubescens, has been reported for its antitumor activity on several cancers. However, its effect on human esophageal cancer remains unclear. In this study, we demonstrated that oridonin could inhibit the growth of human esophageal cancer cells both in vitro and in vivo. Oridonin not only suppressed the proliferation, but also induced cell cycle arrest and mitochondrial-mediated apoptosis in KYSE-30, KYSE-150, and EC9706 cells with dose-dependent manner. Further mechanism studies revealed that oridonin led cell cycle arrest in esophageal cancer cells via downregulating cell cycle-related proteins, such as cyclin B1 and CDK2, while upregulating p53 and p21. Oridonin also increased proapoptotic protein Bax and reduced antiapoptotic protein Bcl-2, as well as the increased expression of cleaved caspase-3, -8, and -9. In addition, oridonin treatment could significantly inhibit the PI3K/Akt/mTOR and Ras/Raf signaling pathway. In vivo results further demonstrated that oridonin treatment markedly inhibited tumor growth in the esophageal cancer xenograft mice model. Taken together, these results suggest that oridonin may be a potential anticancer agent for the treatment of esophageal cancer.
Keyphrases