Immunomodulatory antibody drugs that modulate the function of immune checkpoint molecules, such as programmed death receptor-1 (PD-1) and programmed cell death ligand 1 (PD-L1), have been established as new cancer treatments in human medicine. In recent years, there have also been reports on antibodies that inhibit immune checkpoint molecules in dogs, and clinical trials using such antibodies for canine cancer have been gradually increasing in number. Because inhibitory antibodies restore T-cell function by inhibiting the binding of PD-1 on T cells and its ligand PD-L1, the quality of antibody function has been evaluated using activated T cells or peripheral blood mononuclear cells isolated from healthy dogs; however, the assays and dogs used significantly vary. Therefore, in the present study, we developed a reporter gene assay using reporter cells (Jurkat/NFATluc/cPD1) and effector cells (CTAC/OKT3/cPDL1). Jurkat/NFATluc/cPD1 were generated by introducing both of the NFAT-responsive luciferase gene as a marker of T-cell signaling and canine PD-1, into a human T lymphoid cell line, Jurkat. CTAC/OKT3/cPDL1 were generated by introducing single-chain FV (scFV) of anti-human CD3 antibody (OKT3) and canine PD-L1 into a canine thyroid carcinoma cell line, CTAC. Ligation of PD-1 on Jurkat/NFATluc/cPD1 via binding of PD-L1 on CTAC/OKT3/cPDL1 suppressed NFAT luciferase activity induced by CD3 ligation by scFV of OKT3. The addition of anti-canine PD-1 and PD-L1 antibodies, both of which were previously developed in our laboratory, restored this suppression with high sensitivity, although the anti-human PD-L1 antibody atezolizumab induced a very weak restoration. This assay is an useful method for functionally evaluating the inhibition of canine PD-1 and PD-L1 binding.
Keyphrases
- endothelial cells
- clinical trial
- high throughput
- induced pluripotent stem cells
- induced apoptosis
- pluripotent stem cells
- randomized controlled trial
- monoclonal antibody
- papillary thyroid
- emergency department
- high glucose
- signaling pathway
- crispr cas
- squamous cell carcinoma
- stem cells
- genome wide
- copy number
- cell cycle arrest
- drug delivery
- mesenchymal stem cells
- nuclear factor
- toll like receptor
- drug induced
- single cell
- cancer therapy
- replacement therapy