Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.
Keyphrases
- high glucose
- endothelial cells
- cell adhesion
- oxidative stress
- diabetic rats
- reactive oxygen species
- nitric oxide synthase
- protein kinase
- rheumatoid arthritis
- body weight
- drug induced
- poor prognosis
- nitric oxide
- nlrp inflammasome
- dna damage
- escherichia coli
- cell death
- coronary artery
- induced apoptosis
- coronary artery disease
- stem cells
- respiratory tract
- young adults
- high throughput
- heart failure
- mass spectrometry
- metabolic syndrome
- cell migration
- cell therapy
- left ventricular
- fatty acid
- cell proliferation
- staphylococcus aureus
- adipose tissue
- high fat diet induced
- atrial fibrillation
- skeletal muscle
- weight gain
- pseudomonas aeruginosa
- ejection fraction
- single molecule
- human health