Genome-wide detection of human intronic AG-gain variants located between splicing branchpoints and canonical splice acceptor sites.
Peng ZhangMatthieu ChaldebasMasato OgishiFahd Al QureshahKhoren PonsinYi FengDarawan RinchaiBaptiste MilisavljevicJi Eun HanMarcela Moncada-VélezSevgi KelesBernd SchröderPeter D StensonDavid N CooperAurélie CobatBertrand BoissonQian ZhangStéphanie Boisson-DupuisLaurent AbelJean Laurent CasanovaPublished in: Proceedings of the National Academy of Sciences of the United States of America (2023)
Human genetic variants that introduce an AG into the intronic region between the branchpoint (BP) and the canonical splice acceptor site (ACC) of protein-coding genes can disrupt pre-mRNA splicing. Using our genome-wide BP database, we delineated the BP-ACC segments of all human introns and found extreme depletion of AG/YAG in the [BP+8, ACC-4] high-risk region. We developed AGAIN as a genome-wide computational approach to systematically and precisely pinpoint intronic AG-gain variants within the BP-ACC regions. AGAIN identified 350 AG-gain variants from the Human Gene Mutation Database, all of which alter splicing and cause disease. Among them, 74% created new acceptor sites, whereas 31% resulted in complete exon skipping. AGAIN also predicts the protein-level products resulting from these two consequences. We performed AGAIN on our exome/genomes database of patients with severe infectious diseases but without known genetic etiology and identified a private homozygous intronic AG-gain variant in the antimycobacterial gene SPPL2A in a patient with mycobacterial disease. AGAIN also predicts a retention of six intronic nucleotides that encode an in-frame stop codon, turning AG-gain into stop-gain. This allele was then confirmed experimentally to lead to loss of function by disrupting splicing. We further showed that AG-gain variants inside the high-risk region led to misspliced products, while those outside the region did not, by two case studies in genes STAT1 and IRF7. We finally evaluated AGAIN on our 14 paired exome-RNAseq samples and found that 82% of AG-gain variants in high-risk regions showed evidence of missplicing. AGAIN is publicly available from https://hgidsoft.rockefeller.edu/AGAIN and https://github.com/casanova-lab/AGAIN.
Keyphrases
- genome wide
- copy number
- quantum dots
- endothelial cells
- dna methylation
- highly efficient
- visible light
- induced pluripotent stem cells
- infectious diseases
- pluripotent stem cells
- cell proliferation
- healthcare
- climate change
- gene expression
- early onset
- case report
- mycobacterium tuberculosis
- amino acid
- emergency department
- energy transfer
- electronic health record
- binding protein
- sensitive detection
- immune response
- adverse drug