Login / Signup

Stability of vitamin C, color, and garlic aroma of garlic mashed potatoes in polymer packages processed with microwave-assisted thermal sterilization technology.

Juhi PatelAshutos ParhiSaleh Al-GhamdiChandrashekhar R SonarD Scott MattinsonJuming TangTom YangShyam S Sablani
Published in: Journal of food science (2020)
The U.S. Army and NASA need ready-to-eat meals with extended shelf-life for military operations and future manned space missions. For traditional heat sterilization methods, aluminum foil laminated pouches are used to achieve a shelf-life of 3 to 5 years at room temperature. However, those packages are not suited for advanced thermal processing technologies based on microwave energy. This research investigated the effect of polymeric packaging materials on storage stability of garlic flavor, vitamin C, and color of garlic mashed potatoes processed with microwave-assisted thermal sterilization (MATS) technology. Three types of high-barrier metal oxide-coated polymer pouches were used for MATS process, designed to achieve lethality approximately F0 = 6 min. Aluminum foil-based pouches were used for retort process as control. Results demonstrated that both oxygen and water vapor barrier properties (oxygen transmission rate [OTR] and water vapor transmission rate [WVTR]) of the polymer pouches were affected by MATS processing. OTR increased by three to nine times, while WVTR increased by 5 to 20 times after processing. The MATS process resulted in 13% to 16% vitamin C loss, while retort process resulted in 18% loss in garlic mashed potato. The kinetics of vitamin C indicated that metal oxide-coated high-barrier packages (after processing OTR <0.1 cc/m2 .day; WVTR <1.0 g/m2 .day) could replace aluminum foil-based pouches for MATS processed shelf-stable ready-to-eat garlic mashed potatoes. PRACTICAL APPLICATION: Garlic mashed potatoes in polymer packages processed in a microwave-assisted thermal sterilization (MATS) system had better retention of vitamin C compared to samples packaged in aluminum laminated pouches and processed in retort. Polymer packages combined with MATS processing could potentially provide safe, better quality, and nutritious shelf-stable food products for military and space missions.
Keyphrases
  • room temperature
  • ionic liquid
  • mass spectrometry
  • risk assessment
  • high resolution
  • cancer therapy
  • current status
  • radiofrequency ablation
  • atomic force microscopy
  • aqueous solution