Potential strategies for strengthening surveillance of lymphatic filariasis in American Samoa after mass drug administration: Reducing 'number needed to test' by targeting older age groups, hotspots, and household members of infected persons.
Colleen L LauMeru SheelKatherine M GassSaipale FuimaonoMichael C DavidKimberly Y WonSarah SheridanPatricia M GravesPublished in: PLoS neglected tropical diseases (2020)
Under the Global Programme to Eliminate Lymphatic Filariasis (LF), American Samoa conducted mass drug administration (MDA) from 2000-2006. Despite passing Transmission Assessment Surveys (TAS) in 2011/2012 and 2015, American Samoa failed TAS-3 in 2016, with antigen (Ag) prevalence of 0.7% (95%CI 0.3-1.8%) in 6-7 year-olds. A 2016 community survey (Ag prevalence 6.2% (95%CI 4.4-8.5%) in age ≥8 years) confirmed resurgence. Using data from the 2016 survey, this study aims to i) investigate antibody prevalence in TAS-3 and the community survey, ii) identify risk factors associated with being seropositive for Ag and anti-filarial antibodies, and iii) compare the efficiency of different sampling strategies for identifying seropositive persons in the post-MDA setting. Antibody prevalence in TAS-3 (n = 1143) were 1.6% for Bm14 (95%CI 0.9-2.9%), 7.9% for Wb123 (95%CI 6.4-9.6%), and 20.2% for Bm33 (95%CI 16.7-24.3%); and in the community survey (n = 2507), 13.9% for Bm14 (95%CI 11.2-17.2%), 27.9% for Wb123 (95%CI 24.6-31.4%), and 47.3% for Bm33 (95%CI 42.1-52.6%). Multivariable logistic regression was used to identify risk factors for being seropositive for Ag and antibodies. Higher Ag prevalence was found in males (adjusted odds ratio [aOR] 3.01), age ≥18 years (aOR 2.18), residents of Fagali'i (aOR 15.81), and outdoor workers (aOR 2.61). Ag prevalence was 20.7% (95%CI 9.7-53.5%) in households of Ag-positive children identified in TAS-3. We used NNTestav (average number needed to test to identify one positive) to compare the efficiency of the following strategies for identifying persons who were seropositive for Ag and each antibody: i) TAS of 6-7 year-old children, ii) population representative surveys of older age groups, and iii) targeted surveillance of subpopulations at higher risk of being seropositive (older ages, householders of Ag-positive TAS children, and known hotspots). For Ag, NNTestav ranged from 142.5 for TAS, to <5 for households of index children. NNTestav was lower in older ages, and highest for Ag, followed by Bm14, Wb123 and Bm33 antibodies. We propose a multi-stage surveillance strategy, starting with population-representative sampling (e.g. TAS or population representative survey of older ages), followed by strategies that target subpopulations and/or locations with low NNTestav. This approach could potentially improve the efficiency of identifying remaining infected persons and residual hotspots. Surveillance programs should also explore the utility of antibodies as indicators of transmission.