Login / Signup

Exogenous ABA promotes aroma biosynthesis of postharvest kiwifruit after low-temperature storage.

Xueyuan HanXiaoyu WangChi ShenYiwei MoRungang TianLinchun MaoZisheng LuoHuanyi Yang
Published in: Planta (2022)
Exogenous ABA played a positive role in the accumulation and biosynthesis of aroma components of postharvest kiwifruit after low-temperature storage, especially the esters production during ripening. Low-temperature storage (LTS) generally affects the aroma formation associated with the decrease in aroma quality in kiwifruit. In this work, abscisic acid (ABA) treatment after LTS increased the production of aroma components in postharvest kiwifruit and enhanced the related enzyme activity, especially alcohol acyltransferase (AAT), branched amino acid transaminase (BCAT) and hydroperoxide lyase (HPL). Corresponding to the enzyme activity, the gene expression of AchnAAT, AchnADH, AchnBCAT and AchnHPL was significantly up-regulated by ABA. The principal component analysis further illustrated the differences in aroma components between ABA and the control. The positive correlation of aroma accumulation with the expression levels of AchnPDC and AchnLOX and the enzyme activities of BCAT and pyruvate decarboxylase (PDC) was also revealed by correlation analysis. In addition, the promoter sequences of the key genes involved in aroma biosynthesis contained multiple cis-elements (ABRE and G-box) of ABA-responsive proteins. Combining the transcriptome sequencing data, the promoting role of ABA signaling in the regulation of aroma biosynthesis of postharvest kiwifruit after LTS was discussed. This study would provide a reference for improving aroma quality of postharvest kiwifruit after LTS, as well the molecular mechanism of kiwifruit aroma fading after LTS.
Keyphrases
  • transcription factor
  • gene expression
  • cell wall
  • arabidopsis thaliana
  • dna methylation
  • poor prognosis
  • single cell
  • electronic health record
  • deep learning
  • genome wide