A large genome-wide association study of QT interval length utilizing electronic health records.
Thomas J HoffmannMeng LuAkinyemi Oni-OrisanCatherine LeeNeil RischCarlos IribarrenPublished in: Genetics (2022)
QT interval length is an important risk factor for adverse cardiovascular outcomes; however, the genetic architecture of QT interval remains incompletely understood. We conducted a genome-wide association study of 76,995 ancestrally diverse Kaiser Permanente Northern California members enrolled in the Genetic Epidemiology Research on Adult Health and Aging cohort using 448,517 longitudinal QT interval measurements, uncovering 9 novel variants, most replicating in 40,537 individuals in the UK Biobank and Population Architecture using Genomics and Epidemiology studies. A meta-analysis of all 3 cohorts (n = 117,532) uncovered an additional 19 novel variants. Conditional analysis identified 15 additional variants, 3 of which were novel. Little, if any, difference was seen when adjusting for putative QT interval lengthening medications genome-wide. Using multiple measurements in Genetic Epidemiology Research on Adult Health and Aging increased variance explained by 163%, and we show that the ≈6 measurements in Genetic Epidemiology Research on Adult Health and Aging was equivalent to a 2.4× increase in sample size of a design with a single measurement. The array heritability was estimated at ≈17%, approximately half of our estimate of 36% from family correlations. Heritability enrichment was estimated highest and most significant in cardiovascular tissue (enrichment 7.2, 95% CI = 5.7-8.7, P = 2.1e-10), and many of the novel variants included expression quantitative trait loci in heart and other relevant tissues. Comparing our results to other cardiac function traits, it appears that QT interval has a multifactorial genetic etiology.
Keyphrases
- genome wide
- copy number
- genome wide association study
- dna methylation
- drug induced
- public health
- healthcare
- electronic health record
- risk factors
- mental health
- high resolution
- health information
- poor prognosis
- gene expression
- cross sectional
- emergency department
- single cell
- young adults
- childhood cancer
- climate change
- clinical decision support
- risk assessment