Login / Signup

Long-term persistence and functionality of adoptively transferred antigen-specific T cells with genetically ablated PD-1 expression.

Sarah DötschMortimer SvecKilian SchoberMonika HammelAndreas WanischFüsun GökmenSebastian JaroschLinda WarmuthJack BartonLuka Čičin ŠainElvira D'IppolitoDirk H Busch
Published in: Proceedings of the National Academy of Sciences of the United States of America (2023)
Engagement of the inhibitory T cell receptor programmed cell death protein 1 (PD-1) associates with dysfunctional states of pathogen- or tumor-specific T cells. Accordingly, systemic antibody-mediated blockade of PD-1 has become a central target for immunotherapies but is also associated with severe toxicities due to loss of peripheral tolerance. Therefore, selective ablation of PD-1 expression on adoptively transferred T cells through direct genetic knockout (KO) is currently being explored as an alternative therapeutic approach. However, since PD-1 might also be required for the regulation of physiological T cell function and differentiation, the suitability of PD-1 as an engineering target is controversial. In this study, we systematically investigated the maintenance of T cell functionality after CRISPR/Cas9-mediated PD-1 KO in vivo during and after acute and chronic antigen encounter. Under all tested conditions, PD-1 ablation preserved the persistence, differentiation, and memory formation of adoptively transferred receptor transgenic T cells. Functional PD-1 KO T cells expressing chimeric antigen receptors (CARs) targeting CD19 could be robustly detected for over 390 d in a syngeneic immunocompetent mouse model, in which constant antigen exposure was provided by continuous B cell renewal, representing the longest in vivo follow-up of CAR-T cells described to date. PD-1 KO CAR-T cells showed no evidence for malignant transformation during the entire observation period. Our data demonstrate that genetic ablation of PD-1 does not impair functionality and longevity of adoptively transferred T cells per se and therefore may be pursued more generally in engineered T cell-based immunotherapy to overcome a central immunosuppressive axis.
Keyphrases
  • crispr cas
  • mouse model
  • dna methylation
  • genome wide
  • small molecule
  • atrial fibrillation
  • machine learning
  • cell therapy
  • amino acid
  • cancer therapy
  • artificial intelligence