Login / Signup

Extracellular stimulation of lung fibroblasts with arachidonic acid increases interleukin 11 expression through p38 and ERK signaling.

Kanako SasakiShotaro KomamuraKazuyuki Matsuda
Published in: Biological chemistry (2022)
Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.
Keyphrases