Login / Signup

Parboiled Paddy Drying with Different Dryers: Thermodynamic and Quality Properties, Mathematical Modeling Using ANNs Assessment.

Ebrahim TaghinezhadAntoni SzumnyMohammad KavehVali Rasooli SharabianiAnil KumarNaoto Shimizu
Published in: Foods (Basel, Switzerland) (2020)
The effect of hybrid infrared-convective (IRC), microwave (MIC) and infrared-convective-microwave (IRCM) drying methods on thermodynamic (drying kinetics, effective moisture diffusivity coefficient (Deff), specific energy consumption (SEC)) and quality (head rice yield (HRY), color value and lightness) characteristics of parboiled rice samples were investigated in this study. Experimental data were fitted into empirical drying models to explain moisture ratio (MR) variations during drying. The Artificial Neural Network (ANN) method was applied to predict MR. The IRCM method provided shorter drying time (reduce percentage = 71%) than IRC (41%) and microwave (69%) methods. The Deff of MIC drying (6.85 × 10-11-4.32 × 10-10 m2/s) was found to be more than the observed in IRC (1.32 × 10-10-1.87 × 10-10 m2/s) and IRCM methods (1.58 × 10-11-2.31 × 10-11 m2/s). SEC decreased during drying. Microwave drying had the lowest SEC (0.457 MJ/kg) compared to other drying methods (with mean 28 MJ/kg). Aghbashlo's model was found to be the best for MR prediction. According to the ANN results, the highest determination coefficient (R2) values for MR prediction in IRC, IRCM and MIC drying methods were 0.9993, 0.9995 and 0.9990, respectively. The HRY (from 60.2 to 74.07%) and the color value (from 18.08 to 19.63) increased with the drying process severity, thereby decreasing the lightness (from 57.74 to 62.17). The results of this research can be recommended for the selection of the best dryer for parboiled paddy. Best drying conditions in the study is related to the lowest dryer SEC and sample color value and the highest HRY and sample lightness.
Keyphrases
  • neural network
  • magnetic resonance
  • contrast enhanced
  • computed tomography
  • quality improvement
  • high resolution
  • machine learning
  • artificial intelligence
  • big data
  • optical coherence tomography