Login / Signup

The Growth Proliferation, Apoptotic Prevention, and Differentiation Induction of the Gelatin Hydrolysates from Three Sources to Human Fetal Osteoblasts (hFOB 1.19 Cells).

Ming LuXin-Huai Zhao
Published in: Molecules (Basel, Switzerland) (2018)
Gelatins from the skin of bovine, porcine, and tilapia were hydrolyzed to three degrees of hydrolysis (DH) by alcalase, neutrase, and papain, respectively. These hydrolysates at 0.02⁻0.1 g/L promoted the growth of human fetal osteoblasts by 101.4⁻135.7%, while higher DH or using papain and tilapia gelatins resulted in higher proliferation. The hydrolysates from porcine and tilapia gelatins at 0.05 g/L prevented induced apoptosis (decreasing total apoptotic proportions from 28.4% or 35.2% to 10.3⁻17.5% or 16.0⁻23.6%), and had differentiation induction (increasing alkaline phosphatase activity by 126.9⁻246.7% in early differentiation stage, or enhancing osteocalcin production by 4.1⁻22.5% in later differentiation stage). These hydrolysates had a similar amino acid profile; however, tilapia gelatin hydrolysates by papain with DH 15.4% mostly displayed higher activity than others. Tilapia gelatin hydrolysate could up-regulate β-catenin, Wnt 3a, Wnt 10b, cyclin D1, and c-Myc expression at mRNA levels by 1.11⁻3.60 folds, but down-regulate GSK 3β expression by 0.98 fold. Of note, β-catenin in total cellular and nuclear protein was up-regulated by 1.14⁻1.16 folds but unchanged in cytoplasmic protein, Wnt 10b, cyclin D1, and c-Myc expression were up-regulated by 1.27⁻1.95 folds, whilst GSK 3β expression was down-regulated by 0.87 fold. Activation of Wnt/β-catenin pathway is suggested to mediate cell proliferation and differentiation.
Keyphrases