Phytohormone Behavior in the Model Environment of Plant and Human Lipid Membranes.
Michał FlasińskiPaulina ŚwięchowiczPublished in: The journal of physical chemistry. B (2017)
Interactions between three auxins (indole-3-acetic acid (IAA), 2-naphthoxyacetic acid (BNOA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) and model two-dimensional lipid systems mimicking plant and human cell membranes were investigated in monolayers formed at the air/water solution interface. The analysis was based on the recorded π-A isotherm characteristics complemented with Brewster angle microscopy. The influence of auxins on model membranes was discussed on the basis of condensation changes, modification of mutual lipid-lipid interactions in the mixed films, and morphological alteration of the surface domains on the microscopic scale. It was demonstrated that the lipid composition and mutual proportion of the artificial membranes together with sterol to main the phospholipid ratio play a crucial role in the context of auxin behavior in the membrane-mimicking environment. Apart from specific molecular interactions between studied phytohormones represented by auxins and lipids, the condensation of the investigated monolayers was found to be a regulative factor of model systems' susceptibility toward auxin action. Two effects were recognized: fluidizing of monolayers being in the liquid state (model membranes) and initialization of the three-dimensional structure formation in ordered sterol films at high surface pressure. The influence of auxin molecules on lipid interactions in the monolayer and diminishing of the film condensation was the largest for BNOA, due to the presence of the most bulky nonpolar, aromatic fragment in the molecule. It was also demonstrated that auxins interact with model plant membranes more selectively, stronger, and at markedly lower concentration than with the human membrane models.