Homokaryotic High-Quality Genome Assembly of Medicinal Fungi Wolfiporia hoelen Reveals Auto-Regulation and High-Temperature Adaption of Probable Two-Speed Genome.
Shoujian LiGuoliang MengCaihong DongPublished in: International journal of molecular sciences (2022)
Sclerotia of Wolfiporia hoelen are one of the most important traditional Chinese medicines and are commonly used in China, Japan, Korea, and other Asian countries. In the present study, we presented the first high-quality homokaryotic genome of W. hoelen with 14 chromosomes which was evaluated with assembly index, telomere position detection, and whole-genome collinearity. A 64.44 Mb genome was assembled with a Contig N50 length of 3.76 Mb. The imbalanced distribution of transposons and chromosome characters revealed the probable two-speed genome of W. hoelen . High consistency between methylation and transposon conserved the genome stability. The expansion of the gene family about signal transduction and nutritional transport has intimate relationships with sclerotial formation. Up-regulation of expression for distinctive decomposition enzymes, ROS clearance genes, biosynthesis of unsaturated fatty acids, and change of the cell wall components maintained high-speed growth of mycelia that may be the high-temperature adaption strategy of W. hoelen . Further, the analysis of mating-control genes demonstrated that HD3 probably had no function on mating recognition, with the HD protein in a distant genetic with known species. Overall, the high-quality genome of W. hoelen provided crucial information for genome structure and stability, high-temperature adaption, and sexual and asexual process.