Binding Mechanism of Riboswitch to Natural Ligand Elucidated by McMD-Based Dynamic Docking Simulations.
Gert-Jan BekkerYoshifumi FukunishiJunichi HigoNarutoshi KamiyaPublished in: ACS omega (2024)
Flavin mononucleotide riboswitches are common among many pathogenic bacteria and are therefore considered to be an attractive target for antibiotics development. The riboswitch binds riboflavin (RBF, also known as vitamin B 2 ), and although an experimental structure of their complex has been solved with the ligand bound deep inside the RNA molecule in a seemingly unreachable state, the binding mechanism between these molecules is not yet known. We have therefore used our Multicanonical Molecular Dynamics (McMD)-based dynamic docking protocol to analyze their binding mechanism by simulating the binding process between the riboswitch aptamer domain and the RBF, starting from the apo state of the riboswitch. Here, the refinement stage was crucial to identify the native binding configuration, as several other binding configurations were also found by McMD-based docking simulations. RBF initially binds the interface between P4 and P6 including U61 and G62, which forms a gateway where the ligand lingers until this gateway opens sufficiently to allow the ligand to pass through and slip into the hidden binding site including A48, A49, and A85.