Login / Signup

Discrete latent embedding of single-cell chromatin accessibility sequencing data for uncovering cell heterogeneity.

Xuejian CuiXiaoyang ChenZhen LiZijing GaoShengquan ChenRui Jiang
Published in: Nature computational science (2024)
Single-cell epigenomic data has been growing continuously at an unprecedented pace, but their characteristics such as high dimensionality and sparsity pose substantial challenges to downstream analysis. Although deep learning models-especially variational autoencoders-have been widely used to capture low-dimensional feature embeddings, the prevalent Gaussian assumption somewhat disagrees with real data, and these models tend to struggle to incorporate reference information from abundant cell atlases. Here we propose CASTLE, a deep generative model based on the vector-quantized variational autoencoder framework to extract discrete latent embeddings that interpretably characterize single-cell chromatin accessibility sequencing data. We validate the performance and robustness of CASTLE for accurate cell-type identification and reasonable visualization compared with state-of-the-art methods. We demonstrate the advantages of CASTLE for effective incorporation of existing massive reference datasets in a weakly supervised or supervised manner. We further demonstrate CASTLE's capacity for intuitively distilling cell-type-specific feature spectra that unveil cell heterogeneity and biological implications quantitatively.
Keyphrases