Mechanically Robust Janus Poly(lactic acid) Hybrid Fibrous Membranes toward Highly Efficient Switchable Separation of Surfactant-Stabilized Oil/Water Emulsions.
Yi QinHui ShenLu HanZongmin ZhuFei PanShiwen YangYeqiang TanPublished in: ACS applied materials & interfaces (2020)
An ideal oil/water separation membrane should possess the characteristics of high flux and separation efficiency, recyclability, as well as good mechanical stability. Herein, a facile method is applied to fabricate a Janus polylactic acid (PLA) fibrous membrane for efficiently separating surfactant-stabilized oil/water mixtures. The Janus PLA fibrous membrane architecture was prepared by electrospinning a PLA/carbon nanotubes (CNTs) fibrous membrane and the subsequent electrospinning of a PLA/SiO2 nanofluids (nfs) membrane onto one side of the PLA/CNTs fibrous membrane. Due to the strong electrostatic interaction between SiO2 nfs and CNTs, synchronous enhancement and plasticization of PLA fibrous membranes were achieved, which was far superior to that reported in the literature. The introduction of CNTs had caused an upshift of the hydrophobicity of the PLA/CNTs fibrous membrane (water contact angle (WCA) > 140°). In contrast, SiO2 nfs bearing long-chain organic anions and cations located onto the surface of the fibers during electrospinning to achieve superhydrophilicity (WCA ≈ 0°). Benefiting from completely opposite wettability on both sides of the Janus membrane, the obtained asymmetric Janus membranes exhibited a high flux (1142-1485 L m-2 L-1) and excellent oil/water separation efficiency (>99%), which were superior to those reported for other Janus membranes. Furthermore, the Janus membranes showed desirable flux recovery without any treatment (>80% for water-in-oil emulsions and >90% for oil-in-water emulsions, respectively, after 11 cycles), showcasing promising applications for water treatment in the future.