Login / Signup

SPERM FACTORS AND EGG ACTIVATION: The phenotype of PLCZ1-deficient mice.

Yuhkoh Satouh
Published in: Reproduction (Cambridge, England) (2022)
In 2002, a report suggested that oocyte activation is induced by Plcz1 in mouse oocytes, which prompted great interest in exploring the role of sperm PLCZ1. Thus, PLCZ1 loss-of-function experiments became a crucial tool for addressing this subject. Although the only option to completely delete a target protein in fully functional spermatozoa is to use gene-deficient animals, Plcz1-deficient mice were not reported until 2017. Challenges to obtain suitable in vivo models have been related to altered expression of Capza3, a neighbor gene to Plcz1 locus in mammalian genomes that is required for spermatogenesis. With the advancement of genome-editing technologies, two groups independently and simultaneously produced Plcz1 mutant mouse lines, which were the first animal models to be artificially and reliably deficient for sperm PLCZ1. All Plcz1 mutant mouse lines display normal spermatogenesis and, surprisingly, subfertility rather than complete infertility. Moreover, analysis of oocyte Ca2+ dynamics indicates that mouse PLCζ1 is an essential sperm-derived oocyte activation factor via intracytoplasmic sperm injection, as PLCZ1 deficiency causes a complete lack of Ca2+ oscillations. This seemingly contradictory phenotype can be explained by atypical Ca2+ oscillations that are provoked slowly and less frequently in the case of fertilization accompanied by physiological sperm-egg fusion. These findings not only raise new questions concerning the sperm basic biology, by clearly demonstrating the existence of a PLCZ1-independent oocyte activation mechanism in mice, but also have implications for the treatment and phenotypic interpretation of patients presenting oocyte activation failure.
Keyphrases