Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARγ) in mice.
Jung-Hwan BaekDa-Hyun KimJaegyeong LeeSeok-Jun KimKyung Hee ChunPublished in: Cell death & disease (2021)
Galectin-1 contains a carbohydrate-recognition domain (CRD) as a member of the lectin family. Here, we investigated whether galectin-1 regulates adipogenesis and lipid accumulation. Galectin-1 mRNA is highly expressed in metabolic tissues such as the muscle and adipose tissues. Higher mRNA expression of galectin-1 was detected in white adipose tissues (WATs) of mice that were fed a high-fat diet (HFD) than in those of mice fed a normal-fat diet (NFD). Protein expression of galectin-1 also increased during adipocyte differentiation. Galectin-1 silencing inhibited the differentiation of 3T3-L1 cells and the expression of lipogenic factors, such as PPARγ, C/EBPα, FABP4, and FASN at both mRNA and protein levels. Lactose, an inhibitor by the binding with CRD of galectin-1 in extracellular matrix, did not affect adipocyte differentiation. Galectin-1 is localized in multiple cellular compartments in 3T3-L1 cells. However, we found that DMI (dexamethasone, methylisobutylxanthine, insulin) treatment increased its nuclear localization. Interestingly, galectin-1 interacted with PPARγ. Galectin-1 overexpression resulted in increased PPARγ expression and transcriptional activity. Furthermore, we prepared galectin-1-knockout (Lgals1-/-) mice and fed a 60% HFD. After 10 weeks, Lgals1-/- mice exhibited lower body weight and gonadal WAT (gWAT) mass than wild-type mice. Fasting glucose level was also lower in Lgals1-/-mice than that in wild-type mice. Moreover, lipogenic genes were significantly downregulated in the gWATs and liver tissues from Lgals1-/- mice. Pro-inflammatory cytokines, such as CCL2, CCL3, TNFα, and F4/80, as well as macrophage markers, were also drastically downregulated in the gWATs and liver tissues of Lgals1-/- mice. In addition, Lgals1-/-mice showed elevated expression of genes involved in thermogenesis in the brown adipose tissue. Collectively, galectin-1 exacerbates obesity of mice fed HFD by increment of PPARγ expression and activation. Our findings suggest that galectin-1 could be a potential therapeutic target for obesity and needed further study for clinical application.
Keyphrases
- high fat diet induced
- insulin resistance
- adipose tissue
- high fat diet
- wild type
- skeletal muscle
- type diabetes
- metabolic syndrome
- gene expression
- poor prognosis
- risk assessment
- binding protein
- low dose
- glycemic control
- rheumatoid arthritis
- induced apoptosis
- extracellular matrix
- oxidative stress
- fatty acid
- body mass index
- weight loss
- physical activity
- small molecule
- high resolution
- blood pressure
- amino acid
- cell proliferation
- anti inflammatory
- transcription factor
- preterm birth
- body weight
- heat shock
- dna methylation
- smoking cessation
- replacement therapy