Login / Signup

Establishment of a Cleavage-Based Single-Plasmid Dual-Luciferase Surrogate Reporter for the Cleavage Efficiency Evaluation of CRISPR-Cas12a Systems and Its Primary Application.

Yaoqiang ShiQi TanChunhui YangShilin LiYujia LiBaoren HeHe XieXiaoqiong DuanLimin Chen
Published in: The CRISPR journal (2024)
CRISPR-Cas technology is a widely utilized gene-editing tool that involves gRNA-guided sequence recognition and Cas nuclease-mediated cleavage. The design and evaluation of gRNA are essential for enhancing CRISPR/Cas editing efficiency. Various assays such as single-strand annealing, in vitro cleavage, and T7 endonuclease I (T7EI) are commonly used to assess gRNA-mediated Cas protein cleavage activity. In this study, a firefly luciferase and Renilla luciferase co-expressed and a cleavage-based single-plasmid dual-luciferase surrogate reporter was built to evaluate the gRNA-mediated Cas12a cleavage efficiency. The cleavage activities of CRISPR-Cas12a can be quantitatively determined by the recovery degree of firefly luciferase activity. The cleavage efficiency of CRISPR-Cas12a can be quantitatively measured by the recovery of firefly luciferase activity. By using this system, the cleavage efficiency of CRISPR-Cas12a on hepatitis B virus (HBV)/D expression plasmid was evaluated, revealing a negative correlation between gRNA cleavage efficiency and HBV gene expression measured using an enzyme-linked immunosorbent assay. This simple, efficient, and quantifiable system only requires the dual-luciferase vector and CRISPR-Cas12a vector, making it a valuable tool for selecting effective gRNAs for gene editing.
Keyphrases
  • crispr cas
  • genome editing
  • dna binding
  • hepatitis b virus
  • gene expression
  • transcription factor
  • dna methylation
  • poor prognosis
  • liver failure
  • oxidative stress
  • dna repair
  • binding protein