Control of neutrophil influx during peritonitis by transcriptional cross-regulation of chemokine CXCL1 by IL-17 and IFN-γ.
Rusan A CatarLei ChenSimone M CuffAnn Kift-MorganMatthias EberlRalph KettritzJulian Kamhieh-MilzGuido MollQing LiHongfan ZhaoEdyta KawkaDaniel ZicklerGita ParekhPaul DavisDonald J FraserDuska DragunKai-Uwe EckardtAchim JörresJanusz WitowskiPublished in: The Journal of pathology (2020)
Neutrophil infiltration is a hallmark of peritoneal inflammation, but mechanisms regulating neutrophil recruitment in patients with peritoneal dialysis (PD)-related peritonitis are not fully defined. We examined 104 samples of PD effluent collected during acute peritonitis for correspondence between a broad range of soluble parameters and neutrophil counts. We observed an association between peritoneal IL-17 and neutrophil levels. This relationship was evident in effluent samples with low but not high IFN-γ levels, suggesting a differential effect of IFN-γ concentration on neutrophil infiltration. Surprisingly, there was no association of neutrophil numbers with the level of CXCL1, a key IL-17-induced neutrophil chemoattractant. We investigated therefore the production of CXCL1 by human peritoneal mesothelial cells (HPMCs) under in vitro conditions mimicking clinical peritonitis. Stimulation of HPMCs with IL-17 increased CXCL1 production through induction of transcription factor SP1 and activation of the SP1-binding region of the CXCL1 promoter. These effects were amplified by TNFα. In contrast, IFN-γ dose-dependently suppressed IL-17-induced SP1 activation and CXCL1 production through a transcriptional mechanism involving STAT1. The SP1-mediated induction of CXCL1 was also observed in HPMCs exposed to PD effluent collected during peritonitis and containing IL-17 and TNFα, but not IFN-γ. Supplementation of the effluent with IFN-γ led to a dose-dependent activation of STAT1 and a resultant inhibition of SP1-induced CXCL1 expression. Transmesothelial migration of neutrophils in vitro increased upon stimulation of HPMCs with IL-17 and was reduced by IFN-γ. In addition, HPMCs were capable of binding CXCL1 at their apical cell surface. These observations indicate that changes in relative peritoneal concentrations of IL-17 and IFN-γ can differently engage SP1-STAT1, impacting on mesothelial cell transcription of CXCL1, whose release and binding to HPMC surface may determine optimal neutrophil recruitment and retention during peritonitis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Keyphrases
- transcription factor
- dendritic cells
- immune response
- high glucose
- wastewater treatment
- peritoneal dialysis
- rheumatoid arthritis
- drug induced
- oxidative stress
- diabetic rats
- endothelial cells
- magnetic resonance
- poor prognosis
- computed tomography
- peripheral blood
- liver failure
- anaerobic digestion
- hepatitis b virus
- signaling pathway
- cell therapy
- bone marrow
- cell cycle arrest
- pi k akt
- contrast enhanced
- induced pluripotent stem cells
- pluripotent stem cells