Login / Signup

Mexican Coccoloba uvifera L. Leaf and Fruit Extracts: Identification of Pentacyclic Triterpenes and Volatile Profile by GC-MS.

Calderón-Santoyo MontserratCarolina Calderón-ChiuFrida Zoé Ragazzo-CalderónJulio César Barros-CastilloJuan Arturo Ragazzo-Sánchez
Published in: Plant foods for human nutrition (Dordrecht, Netherlands) (2024)
Mexican Coccoloba uvifera fruit contains polyphenols, flavonoids, and anthocyanins, while in the leaves, lupeol, α- and β-amyrin have been previously identified by HPLC. However, the low resolution by HPLC of pentacyclic triterpenes (PTs) is a limitation. Moreover, the volatile profile of C. uvifera fruit is still unknown. Therefore, this study aimed to identify PTs in C. uvifera leaf and fruit extracts by CG-MS analysis and to determine the volatile profile of C. uvifera pulp by headspace solid-phase microextraction. The results showed trimethylsilylated compounds of standards lupeol, α- and β-amyrin, indicating that the silylation reaction was suitable. These trimethylsilylated compounds were identified in leaf and fruit extracts. The fruit volatile profile revealed the presence of 278 esters, 20 terpenes, 9 aldehydes, 5 alcohols, and 4 ketones. The fruit showed a high content of esters and terpenes. Due to their flavour properties, esters are essential for the food, cosmetics, and pharmaceutics industries. Moreover, terpenes in the fruit, such as menthone, β-elemene, junipene, and β-caryophyllene have the potential as anticancer and phytopathogen agents. The results indicated that GC-MS is an alternative to HPLC approaches for identifying PTs. Besides, identifying volatile compounds in the fruit will increase the value of this plant and expand its application. Identifying PTs and volatile compounds in Mexican C. uvifera leads to a better understanding of the potential benefits of this plant. This would increase the consumption of Mexican C. uvifera fresh or as functional ingredients in nutraceutical or pharmaceutical products.
Keyphrases
  • ms ms
  • gas chromatography
  • mass spectrometry
  • climate change
  • single cell
  • single molecule