NIDM: network impulsive dynamics on multiplex biological network for disease-gene prediction.

Ju XiangJiashuai ZhangRuiqing ZhengXingyi LiMin Li
Published in: Briefings in bioinformatics (2021)
The prediction of genes related to diseases is important to the study of the diseases due to high cost and time consumption of biological experiments. Network propagation is a popular strategy for disease-gene prediction. However, existing methods focus on the stable solution of dynamics while ignoring the useful information hidden in the dynamical process, and it is still a challenge to make use of multiple types of physical/functional relationships between proteins/genes to effectively predict disease-related genes. Therefore, we proposed a framework of network impulsive dynamics on multiplex biological network (NIDM) to predict disease-related genes, along with four variants of NIDM models and four kinds of impulsive dynamical signatures (IDSs). NIDM is to identify disease-related genes by mining the dynamical responses of nodes to impulsive signals being exerted at specific nodes. By a series of experimental evaluations in various types of biological networks, we confirmed the advantage of multiplex network and the important roles of functional associations in disease-gene prediction, demonstrated superior performance of NIDM compared with four types of network-based algorithms and then gave the effective recommendations of NIDM models and IDS signatures. To facilitate the prioritization and analysis of (candidate) genes associated to specific diseases, we developed a user-friendly web server, which provides three kinds of filtering patterns for genes, network visualization, enrichment analysis and a wealth of external links (http://bioinformatics.csu.edu.cn/DGP/NID.jsp). NIDM is a protocol for disease-gene prediction integrating different types of biological networks, which may become a very useful computational tool for the study of disease-related genes.