Login / Signup

Stability and in vitro digestibility of beta-carotene in nanoemulsions fabricated with different carrier oils.

Xinhui ZhouHao WangCuina WangChao ZhaoQian PengTiehua ZhangChang-Hui Zhao
Published in: Food science & nutrition (2018)
Beta-carotene, the main dietary source of provitamin A, is required for maintaining optimum human health. The bioaccessibility of beta-carotene can be greatly improved when ingested with fat. Therefore, the aim of the current study was to select proper oils (palm oil, coconut oil, fish oil, and corn oil) as a carrier to form stable nanoemulsion that can effectively enhance the bioaccessibility of beta-carotene. The nanoemulsion was formulated with 90% (v/v) aqueous solution (2% whey protein isolate, WPI, w/v) and 10% (v/v) dispersed oil. The in vitro digestion experiment of nanoemulsions showed that the bioaccessibility of beta-carotene was as followed in order: palm oil = corn oil > fish oil > coconut oil (p < 0.05). The particle size of the nanoemulsion (initial particle size = 168-185 nm) was below 200 nm during 42 days' storage at 25°C. The retention rates of beta-carotene in nanoemulsions were 69.36%, 63.81%, 49.58%, and 54.91% with palm oil, coconut oil, fish oil, and corn oil, respectively. However, the particle size of the nanoemulsion increased significantly in the accelerated experiment at 55°C (p < 0.05), in which the retention rates of beta-carotene were 48.56%, 43.41%, 29.35%, and 33.60% with palm oil, coconut oil, fish oil, and corn oil, respectively. From above, we conclude that WPI-stabilized beta-carotene nanoemulsion with palm oil as the carrier is the most suitable system to increase bioaccessibility and stability of lipid-soluble bioactive compounds such as beta-carotene.
Keyphrases
  • fatty acid
  • risk assessment
  • human health
  • climate change
  • anaerobic digestion
  • protein protein