Sitagliptin synergizes 5-fluorouracil efficacy in colon cancer cells through MDR1-mediated flux impairment and down regulation of NFκB2 and p-AKT survival proteins.
Asmaa EisaShaden M HanafyHany KhalilMohamed F ElshalPublished in: Journal of biochemical and molecular toxicology (2024)
5-fluorouracil (5-FU) is an inexpensive treatment for colon cancer; however, its efficacy is limited by chemoresistance. This study investigates the combination therapy approach of 5-FU with Sitagliptin (Sita), a diabetic drug with potential cancer-modulating effects. The combination was evaluated in vitro and in silico, focusing on the effects of Sita and 5-FU on colon cancer cells. The results showed that the addition of Sita significantly decreased the IC50 of 5-FU compared to 5-Fu monotherapy. The study also found that Sita and 5-FU interact synergistically, with a combination index below 1. Sita successfully lowered the 5-FU dosage reduction index, decreasing the expression of MDR1 mRNA and p-AKT and NFκB2 subunits p100/p52 protein. Molecular docking analyses confirmed Sita's antagonistic action on MDR1 and thymidylate synthase proteins. The study concludes that sitagliptin can target MDR1, increase apoptosis, and significantly reduce the expression of p-AKT and NFκB2 cell-survival proteins. These effects sensitize colon cancer cells to 5-FU. Repurposing sitagliptin may enhance the anticancer effects of 5-FU at lower dosages.
Keyphrases
- signaling pathway
- combination therapy
- molecular docking
- multidrug resistant
- oxidative stress
- cell proliferation
- poor prognosis
- lps induced
- pi k akt
- type diabetes
- randomized controlled trial
- emergency department
- nuclear factor
- clinical trial
- immune response
- squamous cell carcinoma
- cell death
- small molecule
- climate change
- young adults
- free survival
- squamous cell
- lymph node metastasis