Login / Signup

Ploidy variation and its implications for reproduction and population dynamics in two sympatric Hawaiian coral species.

Timothy G StephensEmma L StrandHollie M PutnamDebashish Bhattacharya
Published in: Genome biology and evolution (2023)
Standing genetic variation is a major driver of fitness and resilience, and therefore of fundamental importance for threatened species such as stony corals. We analyzed RNA-seq data generated from 132 Montipora capitata and 119 Pocillopora acuta coral colonies collected from Kāne'ohe Bay, O'ahu, Hawai'i. Our goals were to determine the extent of colony genetic variation and to study reproductive strategies in these two sympatric species. Surprisingly, we found that 63% of the P. acuta colonies were triploid, with putative independent origins of the different triploid clades. These corals have spread primarily via asexual reproduction and are descended from a small number of genotypes, whose diploid ancestor invaded the bay. In contrast, all M. capitata colonies are diploid, outbreeding, with almost all colonies genetically distinct. Only two cases of asexual reproduction, likely via fragmentation, were identified in this species. We report two distinct strategies in sympatric coral species that inhabit the largest sheltered body of water in the main Hawaiian Islands. These data highlight divergence in reproductive behavior and genome biology, both of which contribute to coral resilience and persistence.
Keyphrases