Proteomic survey of the DNA damage response in Caulobacter crescentus .
Tommy F TashjianRilee D ZeinertStephen J EylesPeter ChienPublished in: Journal of bacteriology (2023)
The bacterial DNA damage response is a critical, coordinated response to endogenous and exogenous sources of DNA damage. Response dynamics are dependent on coordinated synthesis and loss of relevant proteins. While much is known about its global transcriptional control, changes in protein abundance that occur upon DNA damage are less well characterized at the system level. Here, we perform a proteome-wide survey of the DNA damage response in Caulobacter crescentus . We find that while most protein abundance changes upon DNA damage are readily explained by changes in transcription, there are exceptions. The survey also allowed us to identify the novel DNA damage response factor, YaaA, which has been overlooked by previously published, transcription-focused studies. A similar survey in a ∆ lon strain was performed to explore lon's role in DNA damage survival. The ∆ lon strain had a smaller dynamic range of protein abundance changes in general upon DNA damage compared to the wild-type strain. This system-wide change to the dynamics of the response may explain this strain's sensitivity to DNA damage. Our proteome survey of the DNA damage response provides additional insight into the complex regulation of stress response and nominates a novel response factor that was overlooked in prior studies. IMPORTANCE The DNA damage response helps bacteria to react to and potentially survive DNA damage. The mutagenesis induced during this stress response contributes to the development of antibiotic resistance. Understanding how bacteria coordinate their response to DNA damage could help us to combat this growing threat to human health. While the transcriptional regulation of the bacterial DNA damage response has been characterized, this study is the first to our knowledge to assess the proteomic response to DNA damage in Caulobacter .