Newborn screening for Prader-Willi syndrome is feasible: Early diagnosis for better outcomes.
Ranim MahmoudPreeti SinghLan WeissAnita LakatosMelanie OakesWaheeda HossainMerlin G ButlerVirginia E KimonisPublished in: American journal of medical genetics. Part A (2018)
Prader-Willi syndrome (PWS), is a complex genetic disease affecting 1/15,000 individuals, characterized by lack of expression of genes on the paternal chromosome 15q11-q13 region. Clinical features include central hypotonia, poor suck, learning and behavior problems, growth hormone deficiency with short stature, hyperphagia, and morbid obesity. Despite significant advances in genetic testing, the mean age for diagnosis in PWS continues to lag behind. Our goal was to perform a pilot feasibility study to confirm the diagnosis utilizing different genetic technologies in a cohort of 34 individuals with genetically confirmed PWS and 16 healthy controls from blood samples spotted and stored on newborn screening (NBS) filter paper cards. DNA was isolated from NBS cards, and PWS testing performed using DNA methylation-specific PCR (mPCR) and the methylation specific-multiplex ligation dependent probe amplification (MS-MLPA) chromosome 15 probe kit followed by DNA fragment analysis for methylation and copy number status. DNA extraction was successful in 30 of 34 PWS patients and 16 controls. PWS methylation testing was able to correctly identify all PWS patients and MS-MLPA was able to differentiate between 15q11-q13 deletion and non-deletion status and correctly identify deletion subtype (i.e., larger Type I or smaller Type II). mPCR can be used to diagnose PWS and MS-MLPA testing to determine both methylation status as well as the type of deletion or non-deletion status from DNA extracted from NBS filter paper. We propose that PWS testing in newborns is possible and could be included in the Recommended Uniform Screening Panel after establishing a validated cost-effective method.
Keyphrases
- genome wide
- copy number
- growth hormone
- dna methylation
- mitochondrial dna
- end stage renal disease
- circulating tumor
- multiple sclerosis
- cell free
- mass spectrometry
- newly diagnosed
- single molecule
- ms ms
- ejection fraction
- pregnant women
- peritoneal dialysis
- mental health
- weight loss
- quantum dots
- poor prognosis
- type diabetes
- physical activity
- randomized controlled trial
- high throughput
- study protocol
- preterm infants
- long non coding rna
- binding protein
- obese patients
- ionic liquid