Login / Signup

De novo induction of a DNA-histone H3K9 methylation loop on synthetic human repetitive DNA in cultured tobacco cells.

Koichiro OtakeKazuto KugouJekson RobertleeJun-Ichirou OhzekiKoei OkazakiShigeru HananoSeiji TakahashiDaisuke ShibataHiroshi Masumoto
Published in: The Plant journal : for cell and molecular biology (2023)
Genetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among the independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help ensure transgene expression. Here, we report a strategy for chromatin manipulation by artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant BY-2 culture cells. By tethering DNA-methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY-2 cells, presumably by activating the RNA-dependent DNA methylation (RdDM) pathway. Our results emphasize the interplay between DNA and histone methylation mechanisms intrinsic to plant cells. We also found that once epigenetic modification states were induced by tethering of either DRM1 or SUVH9, the modification was maintained even when direct tethering of the effector was inhibited. Our system enables analysis of more diverse epigenetic effectors and can support elucidation of chromatin assembly mechanisms in plant cells.
Keyphrases