Secure Three-Factor Authentication Protocol for Multi-Gateway IoT Environments.
Joon Young LeeSung Jin YuKiSung ParkYoungHo ParkYoung Ho ParkPublished in: Sensors (Basel, Switzerland) (2019)
Internet of Things (IoT) environments such as smart homes, smart factories, and smart buildings have become a part of our lives. The services of IoT environments are provided through wireless networks to legal users. However, the wireless network is an open channel, which is insecure to attacks from adversaries such as replay attacks, impersonation attacks, and invasions of privacy. To provide secure IoT services to users, mutual authentication protocols have attracted much attention as consequential security issues, and numerous protocols have been studied. In 2017, Bae et al. presented a smartcard-based two-factor authentication protocol for multi-gateway IoT environments. However, we point out that Bae et al.'s protocol is vulnerable to user impersonation attacks, gateway spoofing attacks, and session key disclosure, and cannot provide a mutual authentication. In addition, we propose a three-factor mutual authentication protocol for multi-gateway IoT environments to resolve these security weaknesses. Then, we use Burrows-Abadi-Needham (BAN) logic to prove that the proposed protocol achieves secure mutual authentication, and we use the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool to analyze a formal security verification. In conclusion, our proposed protocol is secure and applicable in multi-gateway IoT environments.