MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies.
Arjun BhattacharyaYun LiMichael I LovePublished in: PLoS genetics (2021)
Traditional predictive models for transcriptome-wide association studies (TWAS) consider only single nucleotide polymorphisms (SNPs) local to genes of interest and perform parameter shrinkage with a regularization process. These approaches ignore the effect of distal-SNPs or other molecular effects underlying the SNP-gene association. Here, we outline multi-omics strategies for transcriptome imputation from germline genetics to allow more powerful testing of gene-trait associations by prioritizing distal-SNPs to the gene of interest. In one extension, we identify mediating biomarkers (CpG sites, microRNAs, and transcription factors) highly associated with gene expression and train predictive models for these mediators using their local SNPs. Imputed values for mediators are then incorporated into the final predictive model of gene expression, along with local SNPs. In the second extension, we assess distal-eQTLs (SNPs associated with genes not in a local window around it) for their mediation effect through mediating biomarkers local to these distal-eSNPs. Distal-eSNPs with large indirect mediation effects are then included in the transcriptomic prediction model with the local SNPs around the gene of interest. Using simulations and real data from ROS/MAP brain tissue and TCGA breast tumors, we show considerable gains of percent variance explained (1-2% additive increase) of gene expression and TWAS power to detect gene-trait associations. This integrative approach to transcriptome-wide imputation and association studies aids in identifying the complex interactions underlying genetic regulation within a tissue and important risk genes for various traits and disorders.
Keyphrases
- genome wide
- dna methylation
- gene expression
- copy number
- minimally invasive
- transcription factor
- social support
- genome wide identification
- single cell
- dna damage
- cell death
- depressive symptoms
- mass spectrometry
- dna repair
- oxidative stress
- molecular dynamics
- machine learning
- big data
- dna binding
- blood brain barrier
- case control
- antiretroviral therapy