Login / Signup

Activation of peroxisome proliferator-activated receptor delta suppresses BACE1 expression by up-regulating SOCS1 in a JAK2/STAT1-dependent manner.

Won Jin LeeSun Ah HamGyeong Hee LeeMi-Jung ChoiHyunjin YooKyung Shin PaekDae-Seog LimKwonho HongJung Seok HwangHan-Geuk Seo
Published in: Journal of neurochemistry (2019)
Neuronal expression of beta-secretase 1 (BACE1) has been implicated in the progression of Alzheimer's disease. However, the mechanisms that regulate BACE1 expression are unclear. Here, we show that peroxisome proliferator-activated receptor delta (PPARδ) decreases BACE1 expression by up-regulating suppressor of cytokine signaling 1 (SOCS1) in SH-SY5Y neuroblastoma cells. The activation of PPARδ by GW501516, a specific PPARδ agonist, inhibited expression of BACE1. This effect was abrogated by shRNA-mediated knockdown of PPARδ and by treatment with the PPARδ antagonist GSK0660, indicating that PPARδ is involved in GW501516-mediated suppression of BACE1 expression. On the other hand, GW501516-activated PPARδ induced expression of SOCS1, which is a negative regulator of cytokine signal transduction, at the transcriptional level by binding to a PPAR response element in its promoter. This GW501516-mediated induction of SOCS1 expression led to down-regulation of BACE1 expression via inactivation of signal transducer and activator of transcription 1. GW501516-activated PPARδ suppressed the generation of neurotoxic amyloid beta (Aβ) in accordance with the decrease in BACE1 expression. Taken together, these results indicate that PPARδ attenuates BACE1 expression via SOCS1-mediated inhibition of signal transducer and activator of transcription 1 signaling, thereby suppressing BACE1-associated generation of neurotoxic Aβ.
Keyphrases