Login / Signup

Smooth muscle expression of RNA editing enzyme ADAR1 controls vascular integrity and progression of atherosclerosis.

Chad S WeldyQin LiJoão P MonteiroHongchao GuoDrew GallsWenduo GuPaul P ChengMarkus RamsteDaniel LiBrian T PalmisanoDisha SharmaMatthew D WorssamQuanyi ZhaoAmruta BhateRamendra K KunduTrieu NguyenJin Billy LiThomas Quertermous
Published in: bioRxiv : the preprint server for biology (2024)
Mapping the genomic architecture of complex disease has been predicated on the understanding that genetic variants influence disease risk through modifying gene expression. However, recent discoveries have revealed that a significant burden of disease heritability in common autoinflammatory disorders and coronary artery disease is mediated through genetic variation modifying post-transcriptional modification of RNA through adenosine-to-inosine (A-to-I) RNA editing. This common RNA modification is catalyzed by ADAR enzymes, where ADAR1 edits specific immunogenic double stranded RNA (dsRNA) to prevent activation of the double strand RNA (dsRNA) sensor MDA5 ( IFIH1 ) and stimulation of an interferon stimulated gene (ISG) response. Multiple lines of human genetic data indicate impaired RNA editing and increased dsRNA sensing to be an important mechanism of coronary artery disease (CAD) risk. Here, we provide a crucial link between observations in human genetics and mechanistic cell biology leading to progression of CAD. Through analysis of human atherosclerotic plaque, we implicate the vascular smooth muscle cell (SMC) to have a unique requirement for RNA editing, and that ISG induction occurs in SMC phenotypic modulation, implicating MDA5 activation. Through culture of human coronary artery SMCs, generation of a conditional SMC specific Adar1 deletion mouse model on a pro-atherosclerosis background, and with incorporation of single cell RNA sequencing cellular profiling, we further show that Adar1 controls SMC phenotypic state, is required to maintain vascular integrity, and controls progression of atherosclerosis and vascular calcification. Through this work, we describe a fundamental mechanism of CAD, where cell type and context specific RNA editing and sensing of dsRNA mediates disease progression, bridging our understanding of human genetics and disease causality.
Keyphrases