Login / Signup

Molecular and physiological changes in the SpaceX Inspiration4 civilian crew.

Christopher W JonesEliah G OverbeyJerome LacombeAdrian J EckerCem MeydanKrista RyonBraden T TierneyNamita DamleMatthew MacKayEvan E AfshinJonathan FooxJiwoon ParkTheodore M NelsonMir Suhail MohamadSyed Gufran Ahmad ByhaquiBurhan AslamUmmer Akbar TaliLiaqun NisaPriya V MenonChintan O PatelSharib A KhanDoug J EbertAaron EversonMichael C SchubertNabila N AliMallika S SarmaJang-Keun KimNadia HouerbiKirill GrigorevJ Sebastian Garcia MedinaAlexander J SummersJian GuJohn A AltinAli FattahiMohammad I HirzallahJimmy H WuAlexander C StahnAfshin BehestiRemi KlotzVeronica OrtizMin YuLaura PatrasIrina R MateiDavid C LydenAri M MelnickNeil T BanerjeeSean MullaneAshley S KleinmanMichael LoescheAnil S MenonDorit B DonovielEmmanuel UrquietaJaime MateusAshot E SargsyanMark ShelhamerFrederic ZenhausernEric M BershadMathias BasnerChristopher E Mason
Published in: Nature (2024)
Human spaceflight has historically been managed by government agencies, such as in the NASA Twins Study 1 , but new commercial spaceflight opportunities have opened spaceflight to a broader population. In 2021, the SpaceX Inspiration4 mission launched the first all-civilian crew to low Earth orbit, which included the youngest American astronaut (aged 29), new in-flight experimental technologies (handheld ultrasound imaging, smartwatch wearables and immune profiling), ocular alignment measurements and new protocols for in-depth, multi-omic molecular and cellular profiling. Here we report the primary findings from the 3-day spaceflight mission, which induced a broad range of physiological and stress responses, neurovestibular changes indexed by ocular misalignment, and altered neurocognitive functioning, some of which match those of long-term spaceflight 2 , but almost all of which did not differ from baseline (pre-flight) after return to Earth. Overall, these preliminary civilian spaceflight data suggest that short-duration missions do not pose a significant health risk, and moreover present a rich opportunity to measure the earliest phases of adaptation to spaceflight in the human body at anatomical, cellular, physiological and cognitive levels. Finally, these methods and results lay the foundation for an open, rapidly expanding biomedical database for astronauts 3 , which can inform countermeasure development for both private and government-sponsored space missions.
Keyphrases
  • health risk
  • endothelial cells
  • healthcare
  • heavy metals
  • risk assessment
  • pluripotent stem cells
  • single molecule
  • gestational age