Login / Signup

Intestinal FFA3 mediates obesogenic effects in mice on a Western diet.

Kristen R LednovichChioma NnyamahSophie GoughMedha PriyadarshiniKai XuBarton WicksteedSidharth MishraShalini JainJoseph L ZapaterHariom YadavBrian T Layden
Published in: American journal of physiology. Endocrinology and metabolism (2022)
Free fatty acid receptor 3 (FFA3) is a recently-deorphanized G-protein-coupled receptor. Its ligands are short-chain fatty acids (SCFAs), which are key nutrients derived from the gut microbiome fermentation process that play diverse roles in the regulation of metabolic homeostasis and glycemic control. FFA3 is highly expressed within the intestine, where its role and its effects on physiology and metabolism are unclear. Previous in vivo studies involving this receptor have relied on global knockout mouse models, making it difficult to isolate intestine-specific roles of FFA3. To overcome this challenge, we generated an intestine-specific knockout mouse model for FFA3, Villin-Cre-FFA3 (Vil-FFA3). Model validation and general metabolic assessment of male mice fed a standard chow diet revealed no major congenital defects. Because dietary changes are known to alter gut microbial composition, and thereby SCFA production, an obesogenic challenge was performed on male Vil-FFA3 mice and their littermate controls to probe for a phenotype on a high-fat, high-sugar "Western diet" (WD) compared with a low-fat control diet (CD). Vil-FFA3 mice versus FFA3 fl/fl controls on WD, but not CD, were protected from the development of diet-induced obesity and exhibited significantly less fat mass as well as smaller adipose depositions and adipocytes. Although overall glycemic control was unchanged in the WD-fed Vil-FFA3 group, fasted glucose levels trended lower. Intestinal inflammation was significantly reduced in the WD-fed Vil-FFA3 mice, supporting protection from obesogenic effects. Furthermore, we observed lower levels of gastric inhibitory protein (GIP) in the WD-fed Vil-FFA3 mice, which may contribute to phenotypic changes. Our findings suggest a novel role of intestinal FFA3 in promoting the metabolic consequences of a WD, including the development of obesity and inflammation. Moreover, these data support an intestine-specific role of FFA3 in whole body metabolic homeostasis and in the development of adiposity. NEW & NOTEWORTHY Here, we generated a novel intestine-specific knockout mouse model for FFA3 (Vil-FFA3) and performed a comprehensive metabolic characterization of mice in response to an obesogenic challenge. We found that Vil-FFA3 mice fed with a Western diet were largely protected from obesity, exhibiting significantly lower levels of fat mass, lower intestinal inflammation, and altered expression of intestinal incretin hormones. Results support an important role of intestinal FFA3 in contributing to metabolism and in the development of diet-induced obesity.
Keyphrases