Login / Signup

The Sugar Metabolic Model of Aspergillus niger Can Only Be Reliably Transferred to Fungi of Its Phylum.

Jiajia LiTania ChroumpiSandra GarriguesRoland S KunJiali MengSonia Salazar-CerezoMaria Victoria Aguilar PontesYu ZhangSravanthi TejomurthulaAnna LipzenVivian NgChaevien S ClendinenNikola TolićIgor V GrigorievAdrian TsangMiia R MäkeläBerend SnelMao PengRonald P de Vries
Published in: Journal of fungi (Basel, Switzerland) (2022)
Fungi play a critical role in the global carbon cycle by degrading plant polysaccharides to small sugars and metabolizing them as carbon and energy sources. We mapped the well-established sugar metabolic network of Aspergillus niger to five taxonomically distant species ( Aspergillus nidulans , Penicillium subrubescens , Trichoderma reesei , Phanerochaete chrysosporium and Dichomitus squalens ) using an orthology-based approach. The diversity of sugar metabolism correlates well with the taxonomic distance of the fungi. The pathways are highly conserved between the three studied Eurotiomycetes ( A. niger , A. nidulans , P. subrubescens ). A higher level of diversity was observed between the T. reesei and A. niger , and even more so for the two Basidiomycetes. These results were confirmed by integrative analysis of transcriptome, proteome and metabolome, as well as growth profiles of the fungi growing on the corresponding sugars. In conclusion, the establishment of sugar pathway models in different fungi revealed the diversity of fungal sugar conversion and provided a valuable resource for the community, which would facilitate rational metabolic engineering of these fungi as microbial cell factories.
Keyphrases
  • single cell
  • cell wall
  • gene expression
  • stem cells
  • drinking water
  • transcription factor
  • cell therapy
  • bone marrow
  • dna methylation
  • network analysis