Login / Signup

Upregulation of Superenhancer-Driven LncRNA FASRL by USF1 Promotes De Novo Fatty Acid Biosynthesis to Exacerbate Hepatocellular Carcinoma.

Jiang-Yun PengDian-Kui CaiRen-Li ZengChao-Yang ZhangGuan-Cheng LiSi-Fan ChenXiao-Qing YuanLi Peng
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022)
Superenhancers drive abnormal gene expression in tumors and promote malignancy. However, the relationship between superenhancer-associated long noncoding RNA (lncRNA) and abnormal metabolism is unknown. This study identifies a novel lncRNA, fatty acid synthesis-related lncRNA (FASRL), whose expression is driven by upstream stimulatory factor 1 (USF1) through its superenhancer. FASRL promotes hepatocellular carcinoma (HCC) cell proliferation in vitro and in vivo. Furthermore, FASRL binds to acetyl-CoA carboxylase 1 (ACACA), a fatty acid synthesis rate-limiting enzyme, increasing fatty acid synthesis via the fatty acid metabolism pathway. Moreover, the expression of FASRL, USF1, and ACACA is increased, and their high expression indicates a worse prognosis in HCC patients. In summary, USF1 drives FASRL transcription via a superenhancer. FASRL binding to ACACA increases fatty acid synthesis and lipid accumulation to mechanistically exacerbate HCC. FASRL may serve as a novel prognostic marker and treatment target in HCC.
Keyphrases