Login / Signup

The Effect of the HLB Value of Sucrose Ester on Physiochemical Properties of Bigel Systems.

Daniel GolodnizkyMaya Davidovich-Pinhas
Published in: Foods (Basel, Switzerland) (2020)
The current research explored the effect of different sucrose esters (SEs), with different hydrophilic-lipophilic balance (HLB) values, on bigel structure and properties. Bigels consisting of a water phase with glycerol and gelatin and an oil phase with glycerol mono-stearate, lecithin, and SEs with different HLB values were prepared. Rheological and thermal analyses revealed similar gelation-melting transitions governed by glycerol-monostearate crystallization (at ≈55 °C) for all bigel samples. The bigel matrix of the H1 and H2 samples (bigels consisting of SEs with HLBs of 1 and 2, respectively) demonstrated physical gel rheological characteristics of higher elastic and solid-like behavior compared with the H6 sample (bigel consisting SE with HLB 6). A similar trend was observed in the mechanical analysis with respect to hardness, firmness, and spreadability values, which were in the order of H1 > H2 > H6. This behavior was attributed to droplet size observed in the microscopy analysis, revealing significantly smaller droplets in the H1 and H2 samples compared with the H6 sample. These differences in droplet size were attributed to the diffusion kinetics of the low-molecular-weight surfactants. More specifically, the ability of mono-esterified SEs to diffuse faster than fully esterified SEs due to lower molar mass leads to a higher SE content at the oil-in-water (O/W) interface as opposed to the bulk oil phase. The results demonstrate the importance of the interface content in O/W bigel systems, providing an effective way to alter and control the bigel bulk properties.
Keyphrases
  • single cell
  • high resolution
  • high throughput
  • fatty acid
  • physical activity
  • hyaluronic acid