Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader.
Kailong ZhaoYuhao XiaFujin ZhangXiao-Gen ZhouStan Ziqing LiGui-Jun ZhangPublished in: Communications biology (2023)
Recognition of remote homologous structures is a necessary module in AlphaFold2 and is also essential for the exploration of protein folding pathways. Here, we propose a method, PAthreader, to recognize remote templates and explore folding pathways. Firstly, we design a three-track alignment between predicted distance profiles and structure profiles extracted from PDB and AlphaFold DB, to improve the recognition accuracy of remote templates. Secondly, we improve the performance of AlphaFold2 using the templates identified by PAthreader. Thirdly, we explore protein folding pathways based on our conjecture that dynamic folding information of protein is implicitly contained in its remote homologs. The results show that the average accuracy of PAthreader templates is 11.6% higher than that of HHsearch. In terms of structure modelling, PAthreader outperform AlphaFold2 and ranks first on the CAMEO blind test for the latest three months. Furthermore, we predict protein folding pathways for 37 proteins, in which the results of 7 proteins are almost consistent with those of biological experiments, and the other 30 human proteins have yet to be verified by biological experiments, revealing that folding information can be exploited from remote homologous structures.