The Root of Polygonum multiflorum Thunb. Alleviates Non-Alcoholic Steatosis and Insulin Resistance in High Fat Diet-Fed Mice.
Soonwoong JungHyeonwi SonChung Eun HwangKye Man ChoSang-Won ParkHyun-Joon KimHyun Joon KimPublished in: Nutrients (2020)
Non-alcoholic steatosis and insulin resistance are critical health problems and cause metabolic complications worldwide. In this study, we investigated the molecular mechanism of Polygonum multiflorum Thunb. (PM) against hepatic lipid accumulation and insulin resistance by using in vitro and in vivo models. PM extract significantly attenuated the accumulation of lipid droplets and hepatic triglyceride in free fatty acid (FFA)-exposed HepG2 cells. PM extract increased the AMPK and ACC phosphorylation and GLUT4 expression, whose levels were downregulated in FFA-exposed cells. PM extract also decreased precursor and mature forms of SREBP-1 in FFA-exposed cells. C57BL/6 mice fed with normal diet (ND) or high-fat diet (HFD) were administered PM extract (100 mg/kg) or vehicle orally for 16 weeks. PM extract attenuated the increases of the epididymal and perirenal fats on HFD feeding. PM extract markedly reduced hepatic lipid accumulation and fasting glucose levels, and improved glucose and insulin sensitivity in HFD-fed mice. HFD-fed mice decreased the AMPK and ACC phosphorylation and GLUT4 expression, and increased precursor and mature forms of SREBP-1; these changes were significantly restored by PM extract. In conclusion, PM extract alleviates non-alcoholic steatosis and insulin resistance through modulating the expression of proteins on lipid metabolism and glucose transport in the liver.
Keyphrases
- high fat diet
- insulin resistance
- high fat diet induced
- particulate matter
- air pollution
- adipose tissue
- skeletal muscle
- polycyclic aromatic hydrocarbons
- oxidative stress
- metabolic syndrome
- poor prognosis
- heavy metals
- water soluble
- anti inflammatory
- polycystic ovary syndrome
- type diabetes
- fatty acid
- induced apoptosis
- blood glucose
- healthcare
- mental health
- signaling pathway
- glycemic control
- risk factors
- public health
- cell cycle arrest
- protein kinase
- long non coding rna
- risk assessment
- blood pressure
- wild type
- cell death
- binding protein
- pi k akt
- high resolution
- endoplasmic reticulum stress
- mouse model