Login / Signup

Evaluation of the Physicochemical and Structural Properties and the Sensory Characteristics of Meat Analogues Prepared with Various Non-Animal Based Liquid Additives.

Gihyun WiJunhwan BaeHonggyun KimYoungjae ChoMi-Jung Choi
Published in: Foods (Basel, Switzerland) (2020)
This study investigates the effects of various non-animal-based liquid additives on the physicochemical, structural, and sensory properties of meat analogue. Meat analogue was prepared by blending together textured vegetable protein (TVP), soy protein isolate (SPI), and other liquid additives. Physicochemical (rheological properties, cooking loss (CL), water holding capacity (WHC), texture and color), structural (visible appearance and microstructure), and sensory properties were evaluated. Higher free water content of meat analogue due to water treatment resulted in a decrease in viscoelasticity, the highest CL value, the lowest WHC and hardness value, and a porous structure. Reversely, meat analogue with oil treatment had an increase in viscoelasticity, the lowest CL value, the highest WHC and hardness value, and a dense structure due to hydrophobic interactions. SPI had a positive effect on the gel network formation of TVP matrix, but lecithin had a negative effect resulting in a decrease in viscoelasticity, WHC, hardness value and an increase in CL value and pore size at microstructure. The results of sensory evaluation revealed that juiciness was more affected by water than oil. Oil treatment showed high intensity for texture parameters. On the other hand, emulsion treatment showed high preference scores for texture parameters and overall acceptance.
Keyphrases
  • high intensity
  • ionic liquid
  • computed tomography
  • multiple sclerosis
  • fatty acid