Login / Signup

Structural alteration of cocoa bean shell fibers through biological treatment using Penicillium roqueforti .

Ozana Almeida LessaFabiane Neves SilvaIasnaia Maria de Carvalho TavaresIgor Carvalho Fontes SampaioAdriana Bispo PimentelSelma Gomes Ferreira LeiteMelissa Limoeiro Estrada GutarraLucas Galhardo Pimenta TienneMuhammad IrfanMuhammad BilalPaulo Neilson Marques Dos AnjosLuiz Carlos SalayMarcelo Franco
Published in: Preparative biochemistry & biotechnology (2023)
Lignocellulosic residues, such as cocoa bean shell (FI), are generated in large quantities during agro-industrial activities. Proper management of residual biomass through solid state fermentation (SSF) can be effective in obtaining value-added products. The hypothesis of the present work is that the bioprocess promoted by P. roqueforti can lead to structural changes in the fibers of the fermented cocoa bean shell (FF) that confer characteristics of industrial interest. To unveil such changes, the techniques of FTIR, SEM, XRD, TGA/TG were used. After SSF, an increase of 36.6% in the crystallinity index was observed, reflecting the reduction of amorphous components such as lignin in the FI residue. Furthermore, an increase in porosity was observed through the reduction of the 2θ angle, which gives the FF a potential candidate for applications of porous products. The FTIR results confirm the reduction in hemicellulose content after SSF. The thermal and thermogravimetric tests showed an increase in the hydrophilicity and thermal stability of FF (15% decomposition) in relation to the by-product FI (40% decomposition). These data provided important information regarding changes in the crystallinity of the residue, existing functional groups and changes in degradation temperatures.
Keyphrases
  • solid state
  • wastewater treatment
  • heavy metals
  • lactic acid
  • electronic health record
  • anaerobic digestion
  • ionic liquid
  • healthcare
  • big data
  • machine learning
  • combination therapy