The Presence of TGFβ3 in Human Ovarian Intrafollicular Fluid and Its Involvement in Thromboxane Generation in Follicular Granulosa Cells through a Canonical TGFβRI, Smad2/3 Signaling Pathway and COX-2 Induction.
Tsung-Hsuan LaiHsuan-Ting ChenPi-Hui WuWen-Bin WuPublished in: International journal of molecular sciences (2024)
Ovarian follicular fluid (FF) has a direct impact on oocyte quality, playing key roles in fertilization, implantation, and early embryo development. In our recent study, we found FF thromboxane (TX) to be a novel factor inversely correlated with oocyte maturation and identified thrombin, transforming growth factor β (TGFβ), TNF-α, and follicular granulosa cells (GCs) as possible contributors to FF TX production. Therefore, this study sought to investigate the role of TGFβ3 in regulating TX generation in human ovarian follicular GCs. TGFβ3 was differentially and significantly present in the FF of large and small follicles obtained from IVF patients with average concentrations of 68.58 ± 12.38 and 112.55 ± 14.82 pg/mL, respectively, and its levels were correlated with oocyte maturity. In an in vitro study, TGFβ3 induced TX generation/secretion and the converting enzyme-COX-2 protein/mRNA expression both in human HO23 and primary cultured ovarian follicular GCs. While TGFβRI and Smad2/3 signaling was mainly required for COX-2 induction, ERK1/2 appeared to regulate TX secretion. The participation of Smad2/3 and COX-2 in TGFβ3-induced TX generation/secretion could be further supported by the observations that Smad2/3 phosphorylation and nuclear translocation and siRNA knockdown of COX-2 expression compromised TX secretion in GCs challenged with TGFβ3. Taken together, the results presented here first demonstrated that FF TGFβ3 levels differ significantly in IVF patients' large preovulatory and small mid-antral follicles and are positively associated with oocyte maturation. TGFβ3 can provoke TX generation by induction of COX-2 mRNA/protein via a TGFβR-related canonical Smad2/3 signaling pathway, and TX secretion possibly by ERK1/2. These imply that TGFβ3 is one of the inducers for yielding FF TX in vivo, which may play a role in folliculogenesis and oocyte maturation.
Keyphrases
- transforming growth factor
- epithelial mesenchymal transition
- signaling pathway
- endothelial cells
- pi k akt
- induced apoptosis
- rheumatoid arthritis
- cell proliferation
- end stage renal disease
- ejection fraction
- poor prognosis
- type diabetes
- chronic kidney disease
- skeletal muscle
- induced pluripotent stem cells
- pregnant women
- small molecule
- cell death
- newly diagnosed
- cancer therapy
- pluripotent stem cells
- prognostic factors