Anti-oxidative and anti-neuroinflammatory role of Necrostatin-1s and docosahexaenoic acid in RIP-1-mediated neurotoxicity in MPTP-induced Parkinson's disease model.
Shipra KartikRishi PalManju J ChaudharyPrafulla Chandra TiwariRajendra NathMadhu KumarPublished in: Fundamental & clinical pharmacology (2023)
Parkinson's disease (PD) is a neuromuscular ailment that affects people in their later years and causes both motor and non-motor deficits. Receptor-interacting protein-1 (RIP-1) is a critical participant in necroptotic cell death, possibly through an oxidant-antioxidant imbalance and cytokine cascade activation in PD pathogenesis. The present study examined the role of RIP-1-mediated necroptosis and neuroinflammation in the MPTP-induced PD mouse model, as well as their protection by Necrostatin-1s (an RIP signalling inhibitor), antioxidant DHA and their functional interaction. BALB/c mice were given acute MPTP therapy (4 injections of 15 mg/kg i.p. at 2-h intervals) on day 1. After MPTP intoxication, Necrostatin-1s (Nec-1s; 8 mg/kg/day, i.p.) and DHA (300 mg/kg/day, p.o.) treatments were given once daily for 7 days. The Nec-1s treatment prevented MPTP-induced behavioural, biochemical and neurochemical alterations, and the addition of DHA increases Nec-1s' neuroprotective impact. In addition, Nec-1s and DHA significantly improve the survival of TH-positive dopaminergic neurons and lower expression levels of the inflammatory cytokines, IL-1β and TNF-α. Furthermore, Nec-1s dramatically reduced RIP-1 expression, whereas DHA had little effect. Our research raises the possibility that neuroinflammatory signalling and acute MPTP-induced necroptosis are both mediated by TNFR1-driven RIP-1 activity. In this study, RIP-1 ablation through Nec-1s and the addition of DHA showed a reduction in the levels of pro-inflammatory and oxidative markers, as well as protection from MPTP-driven dopaminergic degeneration and neurobehavioural changes, suggesting potential therapeutic applications. For a better understanding, additional research about the mechanism(s) behind Nec-1s and DHA is required.
Keyphrases
- fatty acid
- high glucose
- diabetic rats
- drug induced
- cell death
- mouse model
- oxidative stress
- poor prognosis
- liver failure
- traumatic brain injury
- stem cells
- spinal cord injury
- type diabetes
- physical activity
- signaling pathway
- mesenchymal stem cells
- lipopolysaccharide induced
- atrial fibrillation
- insulin resistance
- aortic dissection
- hepatitis b virus
- replacement therapy
- metabolic syndrome
- combination therapy
- protein kinase
- lps induced