Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD.
Thomas J HureauJoshua C WeavilSimranjit K SidhuTaylor S ThurstonVan R ReeseJia ZhaoAshley D NelsonNathaniel M BirgenheierRussell S RichardsonMarkus AmannPublished in: Journal of applied physiology (Bethesda, Md. : 1985) (2020)
We examined the effect of intravenous ascorbate (VitC) administration on exercise-induced redox balance, inflammation, exertional dyspnea, neuromuscular fatigue, and exercise tolerance in patients with chronic obstructive pulmonary disease (COPD). Eight COPD patients completed constant-load cycling (∼80% of peak power output, 83 ± 10 W) to task failure after intravenous VitC (2 g) or saline (placebo, PL) infusion. All participants repeated the shorter of the two exercise trials (isotime) with the other infusate. Quadriceps fatigue was determined by pre- to postexercise changes in quadriceps twitch torque (ΔQtw, electrical femoral nerve stimulation). Corticospinal excitability before, during, and after exercise was assessed by changes in motor evoked potentials triggered by transcranial magnetic stimulation. VitC increased superoxide dismutase (marker for endogenous antioxidant capacity) by 129% and mitigated C-reactive protein (marker for inflammation) in the plasma during exercise but failed to alter the exercise-induced increase in lipid peroxidation (malondialdehyde) and free radicals [electron paramagnetic resonance (EPR)-spectroscopy]. Although VitC did, indeed, decrease neuromuscular fatigue (ΔQtw: PL -29 ± 5%, VitC -23 ± 6%, P < 0.05), there was no impact on corticospinal excitability and time to task failure (∼8 min, P = 0.8). Interestingly, in terms of pulmonary limitations to exercise, VitC had no effect on perceived exertional dyspnea (∼8.5/10) and its determinants, including oxygen saturation ([Formula: see text]) (∼92%) and respiratory muscle work (∼650 cmH2O·s·min-1) (P > 0.3). Thus, although VitC facilitated indicators for antioxidant capacity, diminished inflammatory markers, and improved neuromuscular fatigue resistance, it failed to improve exertional dyspnea and cycling exercise tolerance in patients with COPD. As dyspnea is recognized to limit exercise tolerance in COPD, the otherwise beneficial effects of VitC may have been impacted by this unaltered sensation.NEW & NOTEWORTHY We investigated the effect of intravenous vitamin C on redox balance, exertional dyspnea, neuromuscular fatigue, and exercise tolerance in chronic obstructive pulmonary disease (COPD) patients. Acute vitamin C administration increased superoxide dismutase (marker of antioxidant capacity) and attenuated fatigue development but failed to improve exertional dyspnea and exercise tolerance. These findings suggest that a compromised redox balance plays a critical role in the development of fatigue in COPD but also highlight the significance of exertional dyspnea as an important symptom limiting the patients' exercise tolerance.
Keyphrases
- high intensity
- physical activity
- chronic obstructive pulmonary disease
- end stage renal disease
- resistance training
- sleep quality
- lung function
- transcranial magnetic stimulation
- ejection fraction
- chronic kidney disease
- oxidative stress
- randomized controlled trial
- prognostic factors
- depressive symptoms
- peritoneal dialysis
- cystic fibrosis
- nitric oxide
- mental health
- pulmonary hypertension
- high frequency
- study protocol
- social support
- low dose
- preterm infants
- skeletal muscle
- transcranial direct current stimulation
- patient reported outcomes
- patient reported
- quantum dots
- energy transfer