Senescent Human Pancreatic Stellate Cells Secrete CXCR2 Agonist CXCLs to Promote Proliferation and Migration of Human Pancreatic Cancer AsPC-1 and MIAPaCa-2 Cell Lines.
Tetsuya TakikawaShin HamadaRyotaro MatsumotoYu TanakaFumiya KataokaAkira SasakiAtsushi MasamunePublished in: International journal of molecular sciences (2022)
Interactions between pancreatic cancer cells and pancreatic stellate cells (PSCs) play an important role in the progression of pancreatic cancer. Recent studies have shown that cellular senescence and senescence-associated secretory phenotype factors play roles in the progression of cancer. This study aimed to clarify the effects of senescence-induced PSCs on pancreatic cancer cells. Senescence was induced in primary-cultured human PSCs (hPSCs) through treatment with hydrogen peroxide or gemcitabine. Microarray and Gene Ontology analyses showed the alterations in genes and pathways related to cellular senescence and senescence-associated secretory phenotype factors, including the upregulation of C-X-C motif chemokine ligand (CXCL)-1, CXCL2, and CXCL3 through the induction of senescence in hPSCs. Conditioned media of senescent hPSCs increased the proliferation-as found in an assessment with a BrdU incorporation assay-and migration-as found in an assessment with wound-healing and two-chamber assays-of pancreatic cancer AsPC-1 and MIAPaca-2 cell lines. SB225002, a selective CXCR2 antagonist, and SCH-527123, a CXCR1/CXCR2 antagonist, attenuated the effects of conditioned media of senescent hPSCs on the proliferation and migration of pancreatic cancer cells. These results suggest a role of CXCLs as senescence-associated secretory phenotype factors in the interaction between senescent hPSCs and pancreatic cancer cells. Senescent PSCs might be novel therapeutic targets for pancreatic cancer.
Keyphrases
- endothelial cells
- high glucose
- dna damage
- hydrogen peroxide
- stress induced
- induced apoptosis
- high throughput
- cell cycle arrest
- oxidative stress
- diabetic rats
- signaling pathway
- cell migration
- gene expression
- poor prognosis
- long non coding rna
- pluripotent stem cells
- squamous cell carcinoma
- endoplasmic reticulum stress
- genome wide identification
- bioinformatics analysis
- childhood cancer
- single cell