Login / Signup

Fc gamma receptors promote antibody-induced LILRB4 internalization and immune regulation of monocytic AML.

Joshua W MorseXun GuiMi DengRyan HuangXiaohua YePeng ZhaoXuejun FanWei XiongChengcheng ZhangNingyan ZhangZhiqiang An
Published in: Antibody therapeutics (2023)
The immune checkpoint leukocyte immunoglobulin-like receptor B4 (LILRB4) is found specifically on the cell surface of acute monocytic leukemia (monocytic AML), an aggressive and common subtype of AML. We have developed a humanized monoclonal IgG 1 LILRB4-blocking antibody (h128-3), which improved immune regulation but reduced cell surface expression of LILRB4 in monocytic AML models by 40-60%. Interestingly, most of this effect was neutralized by mutation of the Fc region of the antibody (h128-3/N297A), which prevents interaction with Fc gamma receptors (FcγRs). This suggested that there is FcγR-dependent antigenic modulation underlying h128-3's effects, a mechanism known to alter the function of antibodies targeting B-cell malignancies. We disrupted the Fc-FcγR interaction pharmacologically and with stable CRISPR-Cas9-mediated genetic knockout of FcγRs in monocytic AML cell lines to investigate the role of FcγR-dependent antigenic modulation in the regulation of LILRB4 by h128-3. When FcγRI is inhibited or removed from the surface of monocytic AML cells, h128-3 cannot optimally perform its blocking function, resulting in activation of the LILRB4 inhibitory receptor and leading to a 15-25% decrease in T-cell-mediated cytotoxicity in vitro . In the absence of FcγRI, scaffolding by FcγRIIa allows h128-3 to maintain LILRB4-blocking function. Here we define a FcγR-dependent antigenic modulation mechanism underlying the function of an immunoreceptor blocking antibody for the first time in myeloid malignancy. This research will facilitate the development of safe, precision-targeted antibody therapeutics in myeloid malignancies with greater potency and efficacy.
Keyphrases